Domestic Radon Exposure and Risk of Childhood Cancer
Domestic Radon Exposure and Risk of Childhood Cancer
Background: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results.
Objective: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors.
Methods: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects.
Results: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors.
Conclusions: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Childhood cancer is the second most common cause of death in children (after accidents) in developed countries (Jemal et al. 2010; UK Childhood Cancer Study Investigators 2000). Incidence rates of childhood malignancies increased by approximately 1% per year in Europe between 1970 and 1999 (Kaatsch et al. 2006; McKinney 2005;Steliarova-Foucher et al. 2004), and this increase did not slow down in the first 5 years after 2000 (Pritchard-Jones et al. 2006). In the United States, the incidence of childhood malignancies increased by approximately 0.5% per year between 1992 and 2007 (Kohler et al. 2011).
Low-dose ionizing radiation is hypothesized to cause childhood cancer. Radon is a decay product of uranium, a naturally occurring element in granitic and metamorphic rocks (Ball et al. 1991;Gillmore et al. 2005; Gunderson 1992). Radon emanates from soil and concentrates inside buildings. Domestic radon is a major natural source of ionizing radiation exposure. Worldwide, radon is estimated to contribute to roughly half of the average annual ionizing radiation dose (Charles 2001). In Switzerland, this figure was estimated to be 60% (Federal Office of Public Health 2011).
Because of the high fat content of red bone marrow, it has been suggested that radon gas doses delivered to this organ may be high enough to damage stem cells (Tong et al. 2012) and increase the risk of childhood leukemia (Richardson 2008). The relationship between radon exposure and childhood leukemia has been addressed in various case–control studies (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Lubin et al. 1998;Maged et al. 2000;Raaschou-Nielsen et al. 2008;Steinbuch et al. 1999;Stjernfeldt et al. 1987) and ecological studies (Alexander et al. 1990;Butland et al. 1990;Collman et al. 1991;Evrard et al. 2005, 2006; Foreman et al. 1994; Gilman and Knox 1998;Henshaw et al. 1990; Lucie 1990;Muirhead et al. 1991; Richardson et al. 1995; Thorne et al. 1996a, 1996b). Most of the ecological studies reported an association between childhood leukemia and estimated domestic radon exposure. However, because these were population-level analyses, control for individual-level confounders was not possible. Results of case–control studies have been inconsistent (Laurier et al. 2001; Tong et al. 2012), with some studies reporting an association (Maged et al. 2000;Raaschou-Nielsen et al. 2008) and others not (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Lubin et al. 1998;Steinbuch et al. 1999;Stjernfeldt et al. 1987). A recent analysis of a Danish case–control study reported evidence that air pollution from road traffic might enhance the association between radon and childhood leukemia (Bräuner et al. 2012). The authors speculated that attachment of radon decay products to traffic exhaust particles may have been responsible for this observation.
For central nervous system (CNS) tumors, which are almost all found in the brain (McKinney 2005), only a few ecological (Collman et al. 1991;Henshaw et al. 1990; Thorne et al. 1996b) and case–control studies (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Raaschou-Nielsen et al. 2008) have been performed, also showing inconsistent results. Ecological studies have suggested an association between domestic radon concentration and CNS tumors (Collman et al. 1991;Henshaw et al. 1990; Thorne et al. 1996b). Two large case–control studies performed in Denmark (Raaschou-Nielsen et al. 2008) and the United Kingdom (Kendall et al. 2013) reported no evidence of an association. In contrast, a German study (Kaletsch et al. 1999) reported elevated risks of CNS tumors associated with radon exposures > 70 Bq/m. However, the association was based on six exposed cases only.
In view of these conflicting results, we conducted a prospective census-based cohort study to investigate whether domestic radon exposure is associated with childhood cancers, particularly leukemia and CNS tumors. In addition, we evaluated whether exposure to traffic-related air pollution [i.e., nitrogen dioxide (NO2)] might modify associations.
Abstract and Introduction
Abstract
Background: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results.
Objective: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors.
Methods: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects.
Results: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors.
Conclusions: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Introduction
Childhood cancer is the second most common cause of death in children (after accidents) in developed countries (Jemal et al. 2010; UK Childhood Cancer Study Investigators 2000). Incidence rates of childhood malignancies increased by approximately 1% per year in Europe between 1970 and 1999 (Kaatsch et al. 2006; McKinney 2005;Steliarova-Foucher et al. 2004), and this increase did not slow down in the first 5 years after 2000 (Pritchard-Jones et al. 2006). In the United States, the incidence of childhood malignancies increased by approximately 0.5% per year between 1992 and 2007 (Kohler et al. 2011).
Low-dose ionizing radiation is hypothesized to cause childhood cancer. Radon is a decay product of uranium, a naturally occurring element in granitic and metamorphic rocks (Ball et al. 1991;Gillmore et al. 2005; Gunderson 1992). Radon emanates from soil and concentrates inside buildings. Domestic radon is a major natural source of ionizing radiation exposure. Worldwide, radon is estimated to contribute to roughly half of the average annual ionizing radiation dose (Charles 2001). In Switzerland, this figure was estimated to be 60% (Federal Office of Public Health 2011).
Because of the high fat content of red bone marrow, it has been suggested that radon gas doses delivered to this organ may be high enough to damage stem cells (Tong et al. 2012) and increase the risk of childhood leukemia (Richardson 2008). The relationship between radon exposure and childhood leukemia has been addressed in various case–control studies (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Lubin et al. 1998;Maged et al. 2000;Raaschou-Nielsen et al. 2008;Steinbuch et al. 1999;Stjernfeldt et al. 1987) and ecological studies (Alexander et al. 1990;Butland et al. 1990;Collman et al. 1991;Evrard et al. 2005, 2006; Foreman et al. 1994; Gilman and Knox 1998;Henshaw et al. 1990; Lucie 1990;Muirhead et al. 1991; Richardson et al. 1995; Thorne et al. 1996a, 1996b). Most of the ecological studies reported an association between childhood leukemia and estimated domestic radon exposure. However, because these were population-level analyses, control for individual-level confounders was not possible. Results of case–control studies have been inconsistent (Laurier et al. 2001; Tong et al. 2012), with some studies reporting an association (Maged et al. 2000;Raaschou-Nielsen et al. 2008) and others not (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Lubin et al. 1998;Steinbuch et al. 1999;Stjernfeldt et al. 1987). A recent analysis of a Danish case–control study reported evidence that air pollution from road traffic might enhance the association between radon and childhood leukemia (Bräuner et al. 2012). The authors speculated that attachment of radon decay products to traffic exhaust particles may have been responsible for this observation.
For central nervous system (CNS) tumors, which are almost all found in the brain (McKinney 2005), only a few ecological (Collman et al. 1991;Henshaw et al. 1990; Thorne et al. 1996b) and case–control studies (Cartwright et al. 2002;Kaletsch et al. 1999; Kendall et al. 2013;Raaschou-Nielsen et al. 2008) have been performed, also showing inconsistent results. Ecological studies have suggested an association between domestic radon concentration and CNS tumors (Collman et al. 1991;Henshaw et al. 1990; Thorne et al. 1996b). Two large case–control studies performed in Denmark (Raaschou-Nielsen et al. 2008) and the United Kingdom (Kendall et al. 2013) reported no evidence of an association. In contrast, a German study (Kaletsch et al. 1999) reported elevated risks of CNS tumors associated with radon exposures > 70 Bq/m. However, the association was based on six exposed cases only.
In view of these conflicting results, we conducted a prospective census-based cohort study to investigate whether domestic radon exposure is associated with childhood cancers, particularly leukemia and CNS tumors. In addition, we evaluated whether exposure to traffic-related air pollution [i.e., nitrogen dioxide (NO2)] might modify associations.