Health & Medical Environmental

Air Pollution and Mortality in Seven Million Adults

Air Pollution and Mortality in Seven Million Adults

Abstract and Introduction

Abstract


Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004–2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

Introduction


Long-term exposure to air pollution has been associated with mortality in several cohort studies (Abbey et al. 1999; Beelen et al. 2014; Brunekreef et al. 2009; Carey et al. 2013; Cesaroni et al. 2013; Chen et al. 2013; Crouse et al. 2012; Dockery et al. 1993; Hales et al. 2012; Huss et al. 2010; Pope et al. 1995; Yap et al. 2012; Zeger et al. 2008). Although the evidence is increasing, heterogeneity in size of effect estimates between cohort studies has been identified (Hoek et al. 2013).

Cohort studies specifically designed for investigating individual risk factors are time consuming, labor intensive, often limited in size, and relatively costly. To overcome these disadvantages, recent studies have linked existing national databases of air pollution, nonaccidental mortality, individual characteristics, and residential history to assess the relationships between air pollution and mortality more efficiently (Carey et al. 2013; Cesaroni et al. 2013; Chen et al. 2013; Crouse et al. 2012; Hales et al. 2012; Huss et al. 2010; Zeger et al. 2008). The aim of our study was to use existing national databases to evaluate the associations of long term exposure to air pollution [particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2)] with nonaccidental and cause-specific mortality in a cohort of 7.1 million Dutch residents.



You might also like on "Health & Medical"

Leave a reply