Utilization and Outcomes of Colesevelam HCl in the GE EMR
Utilization and Outcomes of Colesevelam HCl in the GE EMR
Diabetes is a costly and increasingly prevalent condition with the number of affected people expected to reach 366 million worldwide by 2030, representing more than a 2-fold increase from the 171 million people with diagnosed diabetes in 2000. Effective prevention and treatment of diabetes is becoming more critical than ever because the diabetes risk factor of obesity is increasing in prevalence and diabetes is now the seventh leading cause of death in the U.S. Diabetes is also the leading cause of kidney failure, non-traumatic lower-limb amputation, and new cases of blindness among U.S. adults.
Appropriate management of glycemic control in type 2 diabetes mellitus (T2DM) can reduce risks of retinopathy, neuropathy, nephropathy, and mortality. Given that cardiovascular disease is strongly implicated in diabetes-related mortality, managing other cardiovascular risk factors is especially important for these patients. In addition to lifestyle modifications to address weight, smoking, dietary intake, and physical activity, controlling diabetes with medications is an important aspect of preventing diabetes morbidity and mortality.
In late 2000, colesevelam HCL (Welchol) was approved by the U.S. Food and Drug Administration (FDA) as an adjuvant therapy to manage diabetes. Colesevelam HCL is a second-generation bile acid sequestrant that, in addition to diet and exercise, can reduce low-density lipoprotein cholesterol (LDL) in patients with hyperlipidemia, and reduce glycated hemoglobin (A1C) in patients with T2DM. Three randomized trials demonstrated A1C improvements ranging from 0.50% to 0.54% when patients on oral agents or insulin were augmented with colesevelam HCL compared with placebo. These randomized controlled trials have assessed the addition of colesevelam HCL to metformin over 26 weeks (A1C treatment difference −0.54%; P < 0.001), the addition of colesevelam HCL to sulfonylurea-based therapy over 26 weeks (A1C treatment difference −0.54%; P < 0.001), and the addition of colesevelam HCL to insulin-based therapy over 16 weeks (A1C treatment difference −0.50%; P < 0.001).
While clinical trials have demonstrated the benefits of colesevelam HCL for T2DM, less information exists regarding real-world, population-based experience. Evidence of real-world effectiveness is important because evidence of efficacy reflected by randomized controlled trials may not be generalizable to broader populations that actually receive treatment in routine clinical practice. Trial eligibility criteria may exclude or under-represent important subgroups of patients such as patients with complex comorbid conditions or certain age groups. Further, medication adherence in trials is often better than in the general population, and in fact in colesevelam HCL trials medication adherence was 93%, as opposed to the estimated 50% that exists in the broader population. These factors might impact estimates of treatment effectiveness. Therefore, broader evidence is needed to support the benefits of treatment in practice.
The purpose of this study was to examine changes in A1C for patients with T2DM receiving colesevelam HCL using data from a large electronic health record, which reflects the real-world experience with colesevelam HCL for lowering A1C in patients with T2DM. Results from this analysis also demonstrate the extent of concordance between evidence of clinical efficacy from randomized trials and real-world effectiveness. This real-world effectiveness information is particularly useful given the diversity of patient characteristics, risk factors, and other treatments used in everyday practice which are not represented by clinical trial data.
Background
Diabetes is a costly and increasingly prevalent condition with the number of affected people expected to reach 366 million worldwide by 2030, representing more than a 2-fold increase from the 171 million people with diagnosed diabetes in 2000. Effective prevention and treatment of diabetes is becoming more critical than ever because the diabetes risk factor of obesity is increasing in prevalence and diabetes is now the seventh leading cause of death in the U.S. Diabetes is also the leading cause of kidney failure, non-traumatic lower-limb amputation, and new cases of blindness among U.S. adults.
Appropriate management of glycemic control in type 2 diabetes mellitus (T2DM) can reduce risks of retinopathy, neuropathy, nephropathy, and mortality. Given that cardiovascular disease is strongly implicated in diabetes-related mortality, managing other cardiovascular risk factors is especially important for these patients. In addition to lifestyle modifications to address weight, smoking, dietary intake, and physical activity, controlling diabetes with medications is an important aspect of preventing diabetes morbidity and mortality.
In late 2000, colesevelam HCL (Welchol) was approved by the U.S. Food and Drug Administration (FDA) as an adjuvant therapy to manage diabetes. Colesevelam HCL is a second-generation bile acid sequestrant that, in addition to diet and exercise, can reduce low-density lipoprotein cholesterol (LDL) in patients with hyperlipidemia, and reduce glycated hemoglobin (A1C) in patients with T2DM. Three randomized trials demonstrated A1C improvements ranging from 0.50% to 0.54% when patients on oral agents or insulin were augmented with colesevelam HCL compared with placebo. These randomized controlled trials have assessed the addition of colesevelam HCL to metformin over 26 weeks (A1C treatment difference −0.54%; P < 0.001), the addition of colesevelam HCL to sulfonylurea-based therapy over 26 weeks (A1C treatment difference −0.54%; P < 0.001), and the addition of colesevelam HCL to insulin-based therapy over 16 weeks (A1C treatment difference −0.50%; P < 0.001).
While clinical trials have demonstrated the benefits of colesevelam HCL for T2DM, less information exists regarding real-world, population-based experience. Evidence of real-world effectiveness is important because evidence of efficacy reflected by randomized controlled trials may not be generalizable to broader populations that actually receive treatment in routine clinical practice. Trial eligibility criteria may exclude or under-represent important subgroups of patients such as patients with complex comorbid conditions or certain age groups. Further, medication adherence in trials is often better than in the general population, and in fact in colesevelam HCL trials medication adherence was 93%, as opposed to the estimated 50% that exists in the broader population. These factors might impact estimates of treatment effectiveness. Therefore, broader evidence is needed to support the benefits of treatment in practice.
The purpose of this study was to examine changes in A1C for patients with T2DM receiving colesevelam HCL using data from a large electronic health record, which reflects the real-world experience with colesevelam HCL for lowering A1C in patients with T2DM. Results from this analysis also demonstrate the extent of concordance between evidence of clinical efficacy from randomized trials and real-world effectiveness. This real-world effectiveness information is particularly useful given the diversity of patient characteristics, risk factors, and other treatments used in everyday practice which are not represented by clinical trial data.